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ERROR ANALYSIS OF CELESTIAL-INERTIAL 
NAVIGATION FOR LOW-THRUST 

INTERPLANETARY VEHICLES 

1. INTRODUCTION 

The purpose of this research study has been to investi- 

gate the performance and requirements of celestial-inertial 

navigation applied to low-thrust (electric propulsion) space 

vehicles. By definition, navigation refers to the process of 

estimating the vehicle's state of motion given certain measure- 

ments of the input/output determinants of this motion. The 

navigational information is then used by the guidance and control 

subsystem to direct the vehicle to its desired target. Although 

the guidance problem is not explicitly considered in this study, 

it is understood that the accuracy and efficiency of guidance 

ultimately depends upon the accuracy of navigation. 

The present investigation is an extension of previous 

work accomplished on the low-thrust navigation problem which was 

performed for Ames Research Center under Contract No. NAS 2-2401 

(Ref. 1). This earlier study gives the mathematical formulation 

of the navigation concept and presents results of a numerical 

performance analysis of navigation during the midcourse, or 

heliocentric, p hase of low-thrust interplanetary missions. The 

objectives of the present study are: 

(1) To apply the navigation concept to the planetocentric 
phases of interplanetary missions, i.e., the escape 
and capture spiral phases. 
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(2) To evaluate the navigation performance for several 
complete interplanetary missions. 

(3) To investigate the effect of incorrect assumptions 
in the a priori statistical data. That is, how do 
the true and estimated navigation‘errors compare 
when incorrect a priori covariance data are used 
in the state estimation procedure? 

This report describes the navigation system in summary fashion, 

and also the principal features of the digital computer program 

developed during the course of this study to evaluate the navi- 

gation system performance. The remaining and major part of this 

report discusses the results obtained according to the study 

objectives stated above. 
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2. DESCRIPTION OF THE NAVIGATION SYSTEM 

The navigation system assumed in this study utilizes 

both celestial and inertial source information for in-flight 

determination of vehicle motion. The celestial observations 

provide the means for significantly reducing the long term 

effects of the inertial gyro and accelerometer errors. Figurel(a) 

illustrates the navigation system concept in functional block 

diagram form. A pair of gimballed star trackers (stellar moni- 

tor) integral with the inertial measurements unit serve to 

align and stabilize the space-fixed coordinate frame. Additional 

celestial sensors such as planet trackers or sextants measure 

appropriate space angles from which vehicle position may be 

found. 

Of principal interest here is the navigation computer 

whose main function is to process the available information so 

as to obtain the best estimate of the vehicle state in the pre- 

sence of random instrumentation errors. Figure l(b) shows the 

computational structure of the state estimation procedure. The 

form of the estimator was orginally established by Kalman (Ref. 2) 

with the aid of linear statistical filter theory, and has since 

been applied extensively by others to the problem of spacecraft 

trajectory determination (Refs. 3,4). Commonly used names for 

this method are "dynamic filtering" and "sequential, minimum- 

variance estimation". 
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The vehicle state includes, in addition to the position 

and velocity coordinates, instrumentation errors having time- 

correlated statistical properties - hence, the estimation pro- 

cedure allows in-flight calibration and correction of certain 

types of instrumentation errors. Of particular importance here 

is the estimation of accelerometer bias (or low-frequency random 

noise) - the accuracy of which may be significantly improved 

over Earth-based calibration methods. As indicated in Figure l(b), 

celestial angle measurements are assumed to be made at discrete 

times whereas acceleration measurements are assumed continuous 

(or, effectively continuous in comparison to the celestial 

sampling rate). The filtering process is also discrete. At 

the celestial measurement time, the weighted difference between 

the measured and predicted space angle is the incremental cor- 

rection applied to the previous estimate of the state. The new, 

and on-the-average improved, estimate serves as the updated 

initial condition used in the solution of the dynamical state 

equations over the next cycle. 

2.1 Celestial Instrumentation Errors 

Stellar Monitor 

The function of the stellar monitor subsystem is to 

track selected stars of known position thereby providing the 

necessary information to measure and correct for inertial plat- 

form misalignment resulting from gyro drift. The attitude 

measurements are obtained from the gimbal angles of the two 
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star trackers comprising the stellar monitor. Assuming a pro- 

portional plus integral correction procedure, it can be shown 

that the platform misalignment angles remaining after correction 

are, effectively, the angular errors of the stellar monitor. 

This is true for both constant and random input errors. For 

simplicity, we assume continuous operation of the stellar monitor 

and also neglect cross-coupling between axes. The error in each 

axis is assumed to be a zero-mean random variable described by a 

"band-limited" white noise process, i.e., an exponential auto- 

correlation function of the form 

(1) 

where a2 and 'I; 
rl '1 

are, respectively, the variance and correlation 

time constant of the stellar monitor error. Generally, the 

correlation time is small as representive of relatively high- 

frequency noise. Stationary statistics are assumed for the 

stellar monitor error, as is the case for all other random 

instrumentation errors considered in this analysis. 

Planet Sensor 

The planet sensor subsystem provides direction angles 

to selected celestial bodies of the solar system (principally 

planets and moons), and, in the case of "near" bodies, also the 

subtended angle of the apparent disk from which range may be 

found directly. These planetary observations yield vehicle 
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position information which serves mainly to compensate for the 

unbounded effect of the accelerometer errors. Without regard 

to the specific configuration of the planet sensors (e.g., theo- 

dolite, sextant or horizon scanner instrumentation types), the 

basic error of the sensor is assumed to be a zero-mean random 

variable whose variance is of the form 

a; = a; + - 
r2-R2 

(2) 

where CJ n is the error attributed to the sensor optics and read- 

out, and uR is the radius uncertainty of the planetary disk or 

horizon. Of course, when the vehicle is at a great distance from 

the planet the first term in (2) will predominate. 

For the purpose of this analysis, it is assumed that the 

planet sensor is an integral part of the inertial measurement 

unit, i.e., the measured planet angles are referenced to the 

space-fixed axes of the inertial platform. In this case, the 

stellar monitor error contributes to the total measurement 

error as in the following equation 

(3) 

where the errors in 8 and 7 are assumed to be uncorrelated. 

2.2 Inertial Instrumentation Errors 

Gvro Drift 

For the purpose of trajectory estimation, thegyro errors 

need not be considered inasmuch as the stellar monitor observation 
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and correction process effectively eliminates gyro drift as a 

significant error source. 

Accelerometer Error 

The error model for the accelerometer assumes two inde- 

pendent random error sources, each of which is described by a 

stationary exponential auto-correlation function. 

(4) 

(5) 

The first of these error components could be associated with a 

relatively high-frequency noise characteristic whose correlation 

time 7ah is quite short-on the order of minutes. The second 

component represents low-frequency or bias type noise where ?; a$ 
is a long correlation time - on the order of days. In particular, 

if 'tat = 00, the low-frequency noise is a pure bias. Each com- 

ponent is assumed to have a zero-mean value. Further, each 

accelerometer in the 3-axis inertial system is assumed to have 

errors which are mutually independent. 

To simplify the computation with little sacrifice in 

accuracy, the high-frequency accelerometer error is modeled as 

a "white noise" process having the auto-correlation function 

,,h) = (6) 

where b('~) is the Dirac delta (unit impulse) function. 
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3. DESCRIPTION OF THE COMPUTER PRQCM 

Actually, two separate computer programs were employed 

in the numerical analysis of navigation performance. The first 

program, developed during the course of the previous year's work 

(Ref. l), was designed specifically for navigation during the 

heliocentric phase of an interplanetary mission. This program, 

written in FORTRAN II, was not directly applicable to a study 

of navigation during the planetocentric phases for the following 

reasons: (1) the heliocentric reference trajectories were of 

an optimal type and were computed concurrently with the naviga- 

tion performance simulation. The variational calculus equations 

which defined the optimal thrust program were unnecessary for 

the planetocentric phase since the latter assumed a continuous, 

tangential thrust program (which is known to be near-optimal), 

(2) the heliocentric trajectories were computed in two-dimen- 

sions only under the assumed influence of a single, inverse- 

square gravitational field, and (3) the celestial observation 

policy during the planetocentric phase of flight differs from 

that during the heliocentric phase. 

It was thought more expediant to develop a new computer 

program to handle the planetocentric navigation problem. Two 

basic subroutines of the former program are incorporated with 

slight modification. These are (1) the fourth-order Runge- 

Kutta numerical integration package, and (2) the optimal filter 

and covariance equations of the minimum variance estimation 

scheme. 
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The new program is written in FORTRAN IV for use on the 

IBM 7094 computer. Single precision arithmetic is used through- 

out with the exception of the variables of integration which are 

accumulated in double precision in order to minimize round-off 

error. Numerical integration may be carried out with either a 

fixed or automatically variable step size. The latter option is 

most suited to the planetocentric spiral trajectory which has a 

continuously and widely varying period of revolution, 

The program does not include the provision for pro- 

cessing either real or simulated observational data. Rather, 

only the error statistics or covariance matrix of the navigation 

variables are computed, The linearized state transition and 

observation matrices needed in the covariance matrix computation 

are numerically evaluated about a fixed reference trajectory. 

This trajectory is computed simultaneously with the error co- 

variance matrix. 

Additional description and features of the planetocen- 

tric navigation computer program are outlined below: 

1) Gravitational Model 

a) primary body including second harmonic oblate- 
ness terms (Earth or target planet) 

b) one secondary body (Moon), no oblateness, 
position determined from orbital elements. 

2) Thrust Acceleration 

a) constant thrust or constant acceleration option 

b) tangentially directed thrust (along or opposite 
to velocity) 
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3) Equation of Motion 

a) Cowell's formulation - rectangular position and 
velocity components referenced to space-fixed 
axes of on-board inertial measurement unit, 
primary body is center of coordinate system. 

b) transformation provided between on-board reference 
axes and equatorial axes of primary body. 

4) Celestial Observation Policv 

a) Observables (4 options) 

l direction of primary body (2 angles referenced 
to on-board axes) 

. direction and angular diameter of primary body 

. direction of primary and secondary bodies 

. direction of primary and secondary bodies, and 
angular diameter of primary body. 

b) Observation Schedule (2 options) 

. fixed time interval, specified by input 

. fixed number of observations per orbit with 
maximum time interval, specified by input 

5) Initialization 

a) Reference Traiectorv (2 options) 

l rectangular position and velocity in on-board 
inertial axis system 

l orbital elements referred to equator of primary 
body 

b) Covariance matrix in position-velocity space 
referred to on-board axes, non-diagonal initial 
covariance allowed but seldom used. 
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4. RESULTS AND DISCUSSION 

Results of the low-thrust navigation study are presented 

in this section in the order of the study objectives stated in 

the introductory remarks. For the most part, the results are 

of numerical form and were obtained from the digital computer 

program described in the previous section. Certain analytical 

results which serve a better understanding of the navigation 

problem are also presented. 

The first topic considered is that of navigation during 

the planetocentric maneuvers - principally, the Earth-escape 

spiral. Some interesting characteristics of the escape trajec- 

tory are discussed, however, there is no intent to fully cover 

this subject which has previously received much attention in the 

literature. The practical problems related to a numerical inves- 

tigation of planetocentric navigation came to light early in this 

study. Mainly, this problem is one of extremely long running 

time of the computer program. The nature of the escape spiral 

(several hundred revolutions about Earth) rquires a relatively 

large number of integration steps per orbit if one wishes to 

maintain even moderate accuracy. Another contributor to long 

running times is the frequency of celestial observations which 

should not be too low in order to compensate for the unbounded 

effect of accelerometer errors. It was estimated that 30-45 

minutes of IBM 7094 time would be required to obtain the com- 

plete planetocentric escape solution beginning from a circular 

orbit of 1000 km altitude. This being only onesolution, it is 
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evident that any type of parametric analysis would be prohibi- 

tively costly. It was decided, therefore, to obtain navigation 

performance data only over two separated segments of the escape 

trajectory. The first segment covers about 36 hours (16 revo- 

lutions) in the low-altitude region. The second segment begins 

at a later time in flight (50,000 km near-circular orbit) and 

continues on to the Earth-escape conditions. This segment 

covers approximately 27 days and 7 revolutions. A parametric 

analysis of the navigation problem was made only for this latter 

trajectory segment. 

The second topic of discussion is navigation performance 

for complete interplanetary missions. Four such missions are 

considered: 

1) Mars Orbiter Mission - 205.4 day heliocentric 
transfer 

2) Venus Orbiter Mission - 120 day heliocentric 
transfer 

3) Mars Flyby Mission - 120 day heliocentric transfer 

4) Jupiter Flyby Mission - 360 day heliocentric transfer 

The orbiter missions terminate in a circular satellite orbit 

about the target planet - 10,000 km at Mars and 20,000 km at 

Venus. This relatively high-altitude terminal condition is 

necessitated again by the constraint of program running time. 

Each interplanetary mission is pieced together from the three 

essentially distinct phases; Earth-escape, heliocentric transfer, 

planet-capture (or flyby). The navigation conditions (estimation 
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covariances) existing at the termination of one phase serve as 

the initial conditions for the succeeding phase. In view of 

the preliminary nature.of this study, no attempt is made to 

optimize the entire mission either in terms of the vehicle con- 

figuration or propulsion system. Thus, for example, the same 

Earth-escape phase trajectory is assumed for each of the inter- 

planetary missions. This should not detract from the navigation 

analysis since it can be established that the navigation per- 

formance is, within reasonable limits, a weak function of 

propulsion system parameters and operational modes. 

The third topic of discussion concerns the question of 

how do the true and estimated navigation errors compare when 

incorrect a priori covariance data are used to initialize the 

state estimation procedure. Some answers to this question are 

presented in the case of Earth-escape navigation. 

4.1 Navigation Durinq Planetocentric Maneuvers 

4.1.1 Traiectorv Characteristics 

A typical Earth-escape trajectory under low-thrust ac- 

celeration would be initiated from a near-circular satellite 

orbit at relatively low altitudes (200-1000 n. miles). The 

initial thrust acceleration for representative vehicle/propulsion 

systems would lie in the range low5 - 10B4 g's (Earth-surface 

gravity units). Assuming a tangentially directed thrust pro- 

gram, the vehicle will gradually increase its energy and altitude 

while remaining in a near-circular orbit. Eventually, during 
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the last several revolutions about Earth, the vehicle will 

break away from the near-circular conditions and spiral out to 

a specified escape energy condition (parabolic or hyperbolic). 

For a thrust acceleration of 10B3 m/sec2 (10B4g), parabolic 

energy would be attained at about 600,000 km from Earth. 

As the vehicle continues thrusting, it establishes a 

hyperbolic trajectory relative to Earth and moves along an 

asymptote that has a nearly constant direction in inertial 

space. The escape-spiral trajectory is designed so that the 

hyperbolic asymptote is pointed in a prescribed direction with 

reference to the ecliptic plane and the Earth-Sun line. .In 

other words, the last spiral turn must be properly oriented. 

Since the vehicle makes several hundred revolutions about Earth 

in the process of escaping, it might be expected that the escape 

direction would be highly sensitive to errors. This expecta- 

tion is amply verified by the results of a previous sensitivity 

analysis (Ref. 5). For example, a 0.1 percent error in either 

the initial orbital altitude or the initial mass, if left 

uncorrected, is sufficient to reverse the direction of escape. 

A minimum error of about 0.1 percent in the thrust magnitude 

acting over the entire trajectory will also result in a 180° 

misorientation. Because of the small control errors involved, 

the vehicle must have the capability of corrective-guidance 

programming, This, of course, implies the capability of state 

estimation or navigation. 
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Perturbations due to Earth oblateness and the lunar 

gravitational field result in some interesting effects on the 

escape spiral trajectory. Some of these perturbing effects are 

quite significant and must be taken into account in the actual 

planning of a space mission. Other effects are mainly of aca- 

demic interest. 

The equations shown in Table I describe the principal 

effect of both oblateness (2nd harmonic only) and thrust ac- 

celeration on the standard orbital elements. The region of 

applicability here is the near-circular spirals at the lower 

altitudes, i.e., semi-major axis approximately equal to radial 

distance and eccentricities in the range 10B4 to 10m2. The 

equatorial plane is the reference plane for the orientation 

angles, i. and Q. 

Oblateness is seen to introduce harmonic oscillations 

in the orbital elements r, e, w and i but, in general, no appre- 

ciable secular changes. The principal effect of oblateness on 

the mission trajectory is a regression of the line of nodes, G. 

This rotation of the orbital plane can be as large as 8O per day 

for a vehicle beginning from a 300 mile circular orbit, and the 

total rotation for typical thrust levels could be as large as 

500. Since the oblateness acceleration at the lower altitudes 

is usually an order of magnitude larger than the available 

thrust acceleration, the rotation of the plane cannot be counter- 

acted by thrust. For those missions where the orientation of the 

plane is important, the predictable regression of the nodes must 
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be taken into account by the choice of nominal initial orienta- 

tion. 

Under the thrust acceleration column of Table I one 

notes that the escape spiral can be made nonoscillatory (i.e., 

r, e and o increase monotonically) by a suitable choice of ini- 

tial conditions, namely, an initial eccentricity equal to twice 

the ratio of thrust to gravity acceleration and a true anomoly 

near 90°. While the nonoscillatory escape spiral offers no spe- 

cial advantages in terms of payload performance, it does offer a 

significant advantage in terms of reduced numerical integration 

times and simplified expressions for guidance purposes. Unfor- 

tunately, the inclusion of oblateness negates the effect of the 

nonoscillatory initial conditions. 

Figure 2 illustrates the combined effect of oblateness 

and thrust over the first two revolutions of an Earth-escape 

spiral beginning in an orbit of 500 km altitude and 45O inclina- 

tion with a thrust acceleration of low3 m/sec2. These results 

are obtained by numerical integration. The rate of change of r 

is quite variable but is mostly of a positive sense. Eventually 

(at the higher altitudes) the oscillations in r and e become 

damped to negligible values and thereafter, these quantities 

increase monotonically. Figure 3 shows these quantities as a 

function of time beginning from a 50,000 km orbit and extending 

to the escape (parabolic) energy condition. 

The action of the Moon as a perturbing influence on the 

escape spiral is illustrated by Figure 4. In this example, the 

orbital planes of the vehicle and Moonarenearly matched and the 
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closest approach to the Moon is 28,000 km. This particular 

gravitational encounter adds about 400 m/set to hyperbolic 

excess velocity and causes the outgoing asymptote to regress 

by 25O. Although the Moon offers a moderate amount of "free" 

energy addition, the usefulness of this flight mode would ulti- 

mately depend upon other mission considerations such as timing 

in relation to target constraints and also guidance accuracy. 

In general, if this energy addition is not called for, it should 

be relatively easy to avoid the perturbing influence of the Moon. 

4.1.2 Naviaation Performance at Low Altitudes 

The performance of the celestial-inertial navigation 

system is first illustrated for the low-altitude segment of the 

Earth-escape spiral. The vehicle is assumed to begin the spiral 

from a near-circular orbit of 45O inclination and altitude 

of 1000 n. mile (r = 8230 km), and a thrust acceleration of 

1o-3 m/sec2. Table II lists the nominal error parameter values 

which are assumed. Initial position and velocity uncertainties 

are 1 km and 1 m/set in each component. All optical instrumen- 

tation errors are assumed 10 seconds of arc, and the horizon 

error is 3.2 km. Correlation time constants of the low and 

high frequency accelerometer errors are, respectively,m (bias) 

and.30 minutes. The RMS magnitude of each accelerometer error 

component is assumed 10e5 m/sec2 for the results to be given in 

this section. Later, a lower value of 10" m/sec2 will be taken 

as nominal and so indicated. The celestial observables are the 

direction angles and subtended diameter of Earth taken at 

15 minute intervals. 
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Figures 5(a) - (d) show the time histories of the RMS 

state estimation errors during the early part of the Earth- 

escape spiral. In the case of position, velocity and accelero- 

meter errors, two error metrics are given. For example, yms 

refers to the RMS magnitude of the position vector uncertainty, 

while err refers to the component of the uncertainty along the 

position vector, L. It is to be noted that the oscillations in 

the position and velocity error response are due to the natural 

oscillations of the trajectory itself. These are eventually 

damped out because of the closed-loop or feedback nature of the 

navigation system. 

The uncertainty in radial position, ar, is reduced to 

0.6 km at about 12 hours of flight (48 observations), and there- 

after approaches a nearly constant value of 0.44 km. Circum- 

ferential position uncertainty, not shown in Figure 5(a), also 

approaches a nearly constant value of 1.35 km. The slow but 

steady decrease of ?rms is then due to the continuing reduction 

in the out-of-plane component-see Figure 5(d). There is a 

similar characteristic for velocity uncertainty shown in 

Figure 5(b). After 36 hours of flight, the uncertainty in 

velocity magnitude is reduced to 0.3 m/set. Figure 5(c) shows 

how the uncertainty in accelerometer bias is reduced by means 

of the celestial observations. For example, csa is reduced by 

70 percent after 36 hours of observation. The improved know- 

ledge of accelerometer bias will continue at an increasing rate 
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corresponding to the accumulated effect of acceleration errors 

on position. It will be shown later.that the eventual reduc- 

tion in bias uncertainty is 2-3 orders of magnitude for the 

in-plane accelerometers and 1 order of magnitude for the out- 

of-plane accelerometer. 

4.1.3 Analvtical Results for Simplified Svstem 
Model 

Since it is possible to obtain an approximate analytical 

solution to the near-circular spiral motion of a low-thrust 

vehicle, it is also possible to find an approximate analytical 

solution to the navigation problem. The analytical relation- 

ships are quite interesting and they help to explain the results 

obtained from the numerical analysis of the more complex naviga- 

tion system. 

Consider the planar motion of a vehicle under constant 

thrust acceleration in a central, inverse-square gravitational 

field. Thrust is directed tangentially, which, for all practical 

purposes, is equivalent to circumferentially directed thrust. 

The region of interest here is the near-circular spirals with 

eccentricities in the range low4 to 10-2. This region holds 

true for either the initial phase of the escape spiral or the 

terminal phase of the capture spiral. 

The nonoscillatory or secular terms of vehicle motion 

may be described by the following approximate solution 

l/2 
V ( > 

v e= r 
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VOVr = 2ra (8) 

(9) 

f3 = * [l - (+q2] + 00 

where V 09 vr9 r7 and 8 are the velocity and position components 

expressed in a rotating polar coordinate frame. p is the 

planet's gravitational constant and a is the thrust accelera- 

tion magnitude. Using equations (7) and (8), the linearized 

differential equations of motion are found to be 

-6a (11) 

b+, = 12 y (rba + abr) 

G = - $(;> 
l/2 

br = + bve 

&6Vr= -c L) 
l/2 

(2rba + 3a6r) 

(12) 

(13) 

(14) 

Although the coefficients in this model are functions of r and, 

hence, of time, they may be assumed constant (average values 

could be used) over a period of time during which many naviga- 

tional observations are made. In this case, a study of naviga- 

tion accuracy for various types of observation policies may be 

greatly facilitated by the use of equations (7) - (14). 
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To illustrate the simplified navigation analysis, suppose 

that on-board measurements of the in-plane angle between a star 

(or inertial reference) and the planet are made at intervals of 

time At. The measurement error, n, is assumed to be a zero-mean 

random variable, independent from one observation to the next, 

and with variance CT 2 
n' Further, let the discrete observation 

policy be represented by its near-equivalent continuous "white 

noise" process. Hence, the observation model may be written 

Y = b0 + n (15) 

E[n(t)n(t+h)] = (aLAt)a(A) = Nb(h) (16) 

To complete the simplified model, the deviation in thrust ac- 

celeration (or, the accelerometer error) is assumed to be given 

by a stationary, exponentially correlated random process having 

a zero mean and variance IS 2 
a* The subsidiary equations are then 

bA = -$ga+u (17) 

E[u(t)u(t+h)] = $ 0; s(h) = as(A) (18) 

Since Vr and r are related to V 8 through equations (7) 

and (81, these variables may be neglected in the remaining 

analysis. The navigation model is therefore represented by 

& = Fx+Gu 
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where 

Hx+n Y = 

Jg 3 [ 
I 

0 

= 0 

0 

- . 
be 

5 
6a - 

F 

3/r 

8 

0 

1 r 1 
0 

-1 

1 

; 

-l/T 

G= 0 

(20) 

(21) 

(22) 

Assuming the observations are processed by the minimum-variance 

estimation method, the estimation error covariance matrix may 

be determined from 

i, = FP + PF T - PHTN-IHP + GQGT (23) 

P(0) = PO 

Rather than assume a value of PO and attempt to solve 

the above set of nonlinear differential equations, let us con- 

sider the "steady-state" solution of (23); i.e., i, = 0. 

Strictly speaking, the steady state solution can never be ob- 

tained exactly since F is not truly constant nor is an infinite 

time record available. However, if we assume that a large 

number of observations are made over an interval equal to the 

system time constant (At << T), and that r can be suitably 

averaged, then the "steady-state" solution should approximate 

the actual solution of (23). The result for 6 = 0 involves the 
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simultaneous solution of 6 nonlinear algebraic equations. An 

approximate solution of the set of equations is obtained under 

the assumption (N/Q)'/' << 27(3/r) 'I3 (Ref. 6). After simpli- 

fication, the "steady-state" RMS errors are 

7/12 l/6 5/e 
be,,=2 (3/r) an aa 

.I/6 & 
( 1 

l/12 

T 

SV = 2 
l/4 l/2 l/2 

r bn aa (T) 
l/2 & l/4 

%Ms 

(24) 

(25) 

11/12 

( 1 
l/6 l/6 5/f3 l/12 

6aRMS = 2 V3 on oa (3) (26) 

The most interesting feature of the above results is 

the power-law dependence of the estimation errors on the navi- 

gation parameters (a,, At) and (era, 'G). Thus, for example, 

(24) tends to verify what one might expect, namely, that sgW 

is sensitive primarily to the observation error variance, less 

to the observation interval, and is rather insensitive to ac- 

celeration error parameters. The opposite is true for Ss,, as 

seen from (26). In particular, the fact that "gIirJrs varies with 

such low fractional powers of a, and At helps to explain why 

correlated accelerometer errors can be accurately estimated 

only when the correlation time 'G is extremely long - approaching 

a pure bias error. This was an important result from the pre- 

vious year's work (Ref. l), and will again be demonstrated in 

the next section of this report. 
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As a numerical example, the following parameters are 

assumed 

a = low3 m/sec2 P = 3.986 x 1Ol4 m3/sec2 

'a = 2 X 10e5 m/se@ r0 = 8230 km 

z = 5 days 

cn = 0.5 mrad 

r = 8800 km 
(average over 5 days) 

At = 15 min 

From equations (24)-(26), the "steady-state" RMS errors are 

obtained 
N 

%M3 = 0.206 mrad 

s? 
%Ms 

= 0.075 m/set 

6aRMS = 0.602 x 10m5 m/sec2 

To check the "steady-state" solution, the covariance equations 

(23) were integrated numerically. The following time history 

was obtained for the velocity and acceleration errors 

t sv (- s"a mMs) 
0 hours 1.0 m/set 2.0 x ioD5 m/sec2 

2 0.20 1.98 

4 0.16 1.78 

6 0.14 1.23 

8 0.11 0.80 

10 0.09 0.65 

12 0.08 0.60 
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Thus, the "steady-state" solution 

is approached after only 12 hours 

The analytical results of 

be applied to the higher altitude 

where c n and At are not constant. 

computer simulation, assume 

given above is verified and 

of flight (48 measurements). 

equations (24)-(26) may also 

spirals, and in the case 

Thus, as in the digital 

= 2(5~10-~) + (3200)’ 
r2 - (6.38~10~)~ 

At = 2 (Period) = K p 
2p 2112 

( > 

As a second example, the following parameters are assumed 

a = 10B3 m/sec2 p = 3.986 X lOi m3/sec2 

'a = 10 
-5 

m/sec2 r0 = 50,000 km 

T = 5 days r = 55,000 km 

K = 8 At = 270 min 

'; 

average over 

3 days 

*n = 0.09 mrad 

The "steady-state" errors in the estimates of velocity and 

acceleration are 

b? = 
%ws 

0.117 m/set 

baRMs = 0.446 x 10M5 m/set9 
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This solution was found to be in close agreement with numerical 

results obtained for the non-simplified navigation system model. 

4.1.4 Earth Escane From 50.000 km 
Orbit-Parametric Results 

This section of the report describes numerical results 

obtained from the computer program for the case of Earth-escape 

navigation initiated from a 50,000 km near-circular orbit. 

Nominal values for initial position and velocity uncertainty, 

stellar monitor error, and planet sensor error are listed in 

Table II. The nominal celestial observation policy consists of 

measuring the direction to Earth and its subtended angle. These 

observations are assumed to be made simultaneously at discrete 

but variable time intervals given by the formula At = P/K 

(At max =1 day), where P is the instantaneous period of the 

orbit and K is the specified integer number of observations per 

orbit. 

Table III shows the effect of the celestial observation 

rate on the RMS state estimation errors at the termination of 

Earth-escape navigation. For this example, a value of 10W5m/sec2 

is assumed for both the high and low frequency components of the 

accelerometer error. The low frequency component is assumed to 

be a pure bias (7;ak = 00). It is seen that the observation rate 

does not have a proportionate effect on the terminal errors, 

although a significant reduction is obtained for the higher 

rates. It is interesting, however, that the low data rate of 
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a/orbit is quite sufficient to hold the in-plane position 

uncertainty to within 30 km and the in-plane velocity uncer- 

tainty to well below 0.1 m/set. The in-plane accelerometer 

bias uncertainty is reduced almost three orders-of-magnitude 

from the initial value of 10m5 m/sec2. A two order-of-magnitude 

reduction is obtained for the out-of-plane accelerometer. 

Table IV shows the effect of the initial accelerometer 

bias uncertainty on the terminal estimation errors. A celestial 

observation rate of 8/orbit is assumed. It is noted that about 

the same results are obtained for accelerometer uncertainties 

of 10 
-6 

and 10 
-5 

m/sec2. This is due to the fact that in each 

of these cases the bias uncertainty is rapidly reduced to about 

the same value. The importance of this result is that, if the 

low-frequency component of accelerometer error is a pure bias, 

it is not necessary to have an extremely accurate accelerometer. 

The estimation of the bias provided by the celestial observa- 

tions would allow a rather poor (1 percent) accelerometer to 

be used without incurring a serious performance loss. 

The effect of observing the Moon under good geometric 

conditions is illustrated by Figure 6. In this example, the 

spacecraft approaches the Moon's orbital radius at about 20 days 

(see Fig. 31, and it is assumed that the timing of the escape 

spiral is such that the spacecraft comes in close proximity to 

the Moon. The improvement in position accuracy takes place 

between 20 and 25 days during which time the spacecraft remains 
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within 100,000 km of the Moon. Thereafter, the position 

information from the lunar observations becomes less effective 

in compensating for the accelerometer error - hence, the upturn 

in the position uncertainty curve. At the escape energy condi- 

tion, the position uncertainty is 12 km when lunar observations 

are made as compared to 28 km when they are not. Other runs 

were made when the lunar observation geometry was rather poor 

with the result that no significant improvement in navigation 

accuracy was obtained. 

The analytical results given in the previous section of 

this report indicated that the correlation time of the accelero- 

meter error has a significant effect on navigation accuracy. 

In particular, when the correlation time is seemingly long but 

not infinite, it is not possible to obtain an accurate estimate 

of the accelerometer error and, hence, performance is degraded. 

This effect is shown in Figures 7(a)-(c) which give the position, 

velocity and accelerometer error uncertainty as a function of 

time. The initial uncertainty of both the low and high fre- 

quency components of accelerometer error are assumed to be 

lo+ m/sec2. Observations of the direction to Earth and its 

subtended angle are made at the rate of 8 per orbit. Results 

are shown parametrically for correlation times of 5 days, 

100 days, and 0% 

The effect of the finite correlation time begins to show 

up fairly early, and relatively poorer performance (compared to 
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infinite correlation time) continues throughout the escape 

spiral. When the correlation time is 5 days, the estimate of 

accelerometer error shows hardly any improvement. Still, the 

position and velocity uncertainty at escape are, respectively, 

150 km and 0.6 m/set. The state uncertainties for a 100 day 

correlation time are, comparatively, a factor of 2 smaller. 

Table V shows the effect of correlation time in terms of the 

various components of state uncertainty at the Earth-escape 

condition. 

The relatively poorer performance associated with the 

finite-time correlation error is a significant result in that 

it is probably unrealistic to expect the low-frequency accelero- 

meter error to remain constant throughout the entire mission. 

Rather, this error may be attributed to a slowly changing cali- 

bration, p erhaps due to component "aging". 

4.2 Navioation for Interplanetarv Missions 

The state estimation uncertainties existing at the 

termination of the Earth-escape phase are used as initial con- 

ditions to investigate the navigation performance for several 

interplanetary mission examples. Each of these missions include 

a heliocentric transfer phase and a planet capture (or approach) 

phase during which the on-board navigation system is assumed to 

be operable. For the heliocentric transfer phase, celestial 

observations of both Earth and the target planet are made at 

fixed time intervals. For the target planetocentric phase, 
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observations are made of the target planet direction and its 

subtended angle. 

Since the accelerometer error correlation time has been 

shown to have a significant effect on the accuracy of state 

estimation, it was decided to obtain results for a finite-time 

correlation in addition to the pure bias error- For descriptive 

purposes only, the two values of correlation are designated by 

the terms System I and System II accelerometers. 

System I Accelerometer: ?;a& - - 00 (bias) 
cxa~=lO-'m/sec 

System II Accelerometer: ~~~ = 100 days ) 

To reiterate, the initial state estimation errors for each of 

these accelerometers are obtained from the termination of Earth- 

escape as given by Figures 7(a)-(c). Results for the interplane- 

tary missions are discussed below in terms of the accuracy of 

position estimation. Additional results are summarized in 

Tables VI - IX. 

4.2.1 Mars Orbiter Mission 

The trajectory profile for this mission consists of a 

205.4 day heliocentric transfer and rendezvous with Mars followed 

by a low-thrust capture spiral down to a 10,000 km circular orbit 

around Mars. Constant thrust propulsion along with an optimal 

steering program and optimal coast period are assumed for the 

heliocentric transfer phase which is illustrated in Figure 8, 

This diagram shows the Earth, vehicle, and Mars position at 

various times in the flight. Also shown is the direction of 

the applied thrust. 
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Figure 9 shows the time history of position uncertainty 

during the heliocentric transfer. The maximum errors associated 

with the System I and II accelerometers are respectively, 1000 km 

and 3000 km. The respective errors at Mars rendezvous are 300 km 

and 1500 km. The initial error buildup is due principally to the 

uncertainty in the low frequency component of the accelerometer 

error. This is eventually damped by the celestial position in- 

formation. The dip in the curves at mid flight is due to the 

combined effect of an improved celestial observation geometry, 

and the coast period during which the accelerometers are turned 

off. Results show that the largest components of position un- 

certainty lie in the plane of motion. 

Figure 10 shows the position uncertainty during the Mars- 

capture phase, again, the initial state uncertainties being 

taken from the termination of the heliocentric rendezvous. It 

is seen that the position estimate is continuously improved with 

time (there are small oscillations similar to the escape spiral 

but a smooth curve is used for simplicity of presentation). For 

all practical purposes, the accelerometer correlation time has 

little effect on navigation accuracy after a few days of planet 

observations. The final position uncertainty in the lO?OOO km 

orbit is less than 1 km. 

4.2.2 Venus Orbiter Mission 

The trajectory profile for this mission consists of a 

120 day heliocentric transfer and rendezvous with Venus followed 
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by a low-thrust capture spiral down to a 20,000 km circular 

orbit around Venus. A diagram of the rendezvous trajectory is 

given by Figure 11. Here, thrust is applied continuously (no 

coast period) with optimal magnitude and direction. Figures 12 

and 13 show the time history of position uncertainty during the 

heliocentric and capture phases, The characteristic and numeri- 

cal values are similar to the Mars Orbiter Mission. 

4.2.3 Mars Flvbv Mission 

The heliocentric phase of this mission is diagrammed in 

Figure 14. The transfer trajectory takes 120 days and assumes 

an optimum, variable thrust mode of propulsion., The hyperbolic 

approach velocity at Mars is 12,6 km/set and the distance of 

closest approach is specified as 6500 km, It should be made 

clear that the vehicle does not continue to thrust during the 

planetocentric approach, but, rather, "free-falls" towards Mars, 

The heliocentric position uncertainty shown in Figure 15 

displays a characteristic similar to the Mars Orbiter Mission, 

The principal difference occurs at the end of the heliocentric 

phase where, in the case of flyby, the position uncertainty is 

not reduced until the last day or so. The reason for this lies 

in the fact that the vehicle approaches the orbit of Mars at 

high velocity and, therefore, spends relatively little time in 

the near vicinity of Mars where position information can be 

improved. To compensate for this, the observation interval 

should be reduced as Mars is approached. Figure 16 shows the 
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effect of reducing the observation interval to l/2 hour during 

the planetocentric approach. Position uncertainty is presented 

in terms of the closest approach distance rather than the full 

vector uncertainty, rms. The initial uncertaintites are 850 km 

and 1950 km corresponding to the System I and System II accelero- 

meters. A few observations bring the uncertainty down to 100 km 

in each case. Thereafter, the System I'accuracy is significantly 

better up until the last observation which occurs 1 hr before 

closest approach. The final uncertainty is about 5 km. The 

reason for the large deviation between the System I and System II 

curves is due to the poorer quality initial velocity information 

in the later case - 0.8 m/set as compared to 0.1 m/set. The 

velocity uncertainty is not improved by additional celestial 

observations. The reason that accelerometer correlation time is 

relatively less significant for the low-thrust capture spiral 

(see Fig. 10) is simply that this type of trajectory allows much 

improvement in the velocity information. 

4.2.4 Jupiter Flvbv Mission 

This mission assumes a 360 day transfer using an optimum, 

variable thrust program as pictured in Figure 17. The hyperbolic 

approach velocity at Jupiter is 28.3 km/set and the distance of 

closest approach is 138,000 km (about 2 Jupiter radii). As in 

the Mars example, the planetocentric trajectory is non-thrusted. 

Spacecraft position during the heliocentric transfer to 

Jupiter is not too well determined as seen from Figure 18. This 

-33- 



is true in terms of an absolute kilometer measure, but it must 

be remembered that the distances involved here are considerably 

greater than in the Mars mission. A rapid improvemnt in posi- 

tion information is obtained as the vehicle closes on Jupiter 

during the last 5 days of flight. Figure 19 shows this improve- 

ment for a reduced observation interval of 2 hrs. In this 

example, the linear uncertainty in Jupiter's apparent diameter 

was arbitrarily taken as 32 km. The initial condition for the 

approach navigation is taken at 355 days of the heliocentric 

transfer at which time the vehicle's 12.5 million kilometers 

from Jupiter and has an uncertainty in the distance of closest 

approach of 4400 km (System I) and 42,000 km (System II). At 

the end of 2 days, these uncertainties are reduced to 200 km 

and 1000 km, respectively. The final observation is made at 

a distance of 0.5 X lo6 km, 4 hrs before closest approach. At 

this time, the FWS uncertainty in the closest approach distance 

is of the order 50-80 km. 

4.3 Effect of Incorrect A Pri.qri_Covariance 

The method of minimum variance estimation requires 

knowledge of the a priori statistics which characterize the 

assumed error model. Generally, these statistics will not be 

known exactly, but one must proceed anyway with the best assump- 

tion available at the time. Under these circumstances, it could 

be said that the state estimation procedure is really only con- 

ditionally optimal. That is, the estimate is optimal only under 
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the conditions that the assumed statistics are the true statistics. 

When this is not satisfied, the state estimate is not optimal nor 

is the computed statistics of the estimation error equal to the 

true statistics of this error. The first question concerning 

optimality will not be given further consideration here. However, 

the second question concerning the computed estimation errors is 

of practical interest. That is, how do the true and computed 

errors compare when incorrect a priori covariance data are used 

in the state estimation procedure? Some answers to this question 

are given in the following paragraphs. 

The a priori information enters the problem in four 

ways: (1) PO, the error covariance matrix of the initial state 

estimate, (2) U, the matrix of "white noise" covariances which 

are used to model the correlated noise process, (3) A, the 

linearized system matrix which contains the noise correlation 

time constants, and (4) Nk, the covariance matrix of the random 

observation errors at time tk. Errors or uncertainty in the 

a priori information are designated APO, AU, AA and ANk, respec- 

tively. It is of interest, then, to determine AP k = P;: - Pk, 

where Pk is the computed state estimation error covariance ob- 

tained under the assumption that the a priori data are correct, 

and P* 
k is the true error covariance obtained from the estimation 

procedure which uses the incorrect a priori data. 

It can be shown that the difference between the true 

and computed covariance at the time of an observation is given 
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by the equation (using notation of Reference 1) 

Apk = (I-Kks)AP;(I-KkM$T + KkANk< (27) 

where AP; is the error propagated from the previous observation 

time which may be obtained from the solution of the differential 

equation 

Ai = AAP + APA~ + BAUB~ 

(28) 

+ AA(P+AP) + (P+AP)AA~ 

with t in the interval (tk 1, tk) and with the initial condition 

Ap (tk-,) l The above equations are included in the computer 

program and, upon option, APk may be computed for arbitrary 

values of APO, AU, AA and AN. 

Some numerical results which show the effect of in- 

correct a priori covariance assumptions are given in Tables X - 

XIV. The reference trajectory for these examples is the Earth- 

escape spiral from a 50,000 km near-circular orbit which has been 

described earlier in this report. Eight observations per orbit 

are assumed. 

Incorrect Initial Velocity Covariance 

The effect of an assumed initial velocity covariance 

that is smaller than the true value is virtually insignificant. 

Results were obtained for a true error of 2 m/set and 10 m/set 

when the assumed value was 1 misec. In each case, the true 
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state estimation errors approached the computed errors after 

only 6 observations (1 day of flight). The explanation of this 

result is that the velocity information provided by the celestial 

observations is accurate to within a small fraction of 1 m/set, 

and, therefore, the larger initial velocity errors are quickly 

negated. 

Table X compares the computed and true estimation errors 

when the assumed initial velocity uncertainty is 1 m/set but the 

true uncertainty is zero. In this case, the true estimation 

errors are smaller, although the difference is not very signifi- 

cant over most of the flight. At t = 25 days, the true estima- 

tion errors are about 30-35 percent less than the computed values. 

Incorrect Accelerometer Bias Covariance 

Table XI shows the effect QI state estimation when the 

true accelerometer bias uncertainty is twice the assumed value. 

In this case, the true estimation errors, and in particular 

z* 
lITlEG’ 

are larger than the computed values. However, the position 

and velocity estimates converge after only 3 days of flight. 

This result seems to be in contradiction to the fact that true 

accelerometer bias uncertainty remains significantly larger than 

the computed value until about 20 days of flight. The explana- 

tion is that the quantities listed are the magnitudes of the 

estimation error vectors, and, in the case of accelerometer bias, 

the out-of-plane component is the principal contributor to the 

total error. Actually, convergence of the in-plane components 

of Z and a -* 
IZlTlS 

rms occurs at 4 days of flight. 
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Table XII compares the computed and true estimation 

errors when the assumed accelerometer bias uncertainty is 

10 times larger than the true value. The effect on position 

and velocity estimation is similar to the case where the 

assumed initial velocity covariance was too large. That is, 

the true estimation errors are smaller than the computed errors, 

but not significantly so throughout most of the flight. The 

last two columns of Table XII show the gradual convergence 

trend of the computed and true uncertainties in the accelero- 

meter bias. 

Incorrect Correlation Time of Accelerometer Error 

Results previously described in Figures 7(a)-(c) indi- 

cated the sensitivity of navigation accuracy to the correlation 

time constant of the low-frequency component of accelerometer 

error. A similar sensitivity is found when the assumed correla- 

tion time is incorrect. Table XIII compares the computed and 

true estimation errors when the accelerometer error is actually 

correlated (TG = 100 days) but assumed to be a bias. In this 

case, at least initially, it is possible for the true estimation 

errors in position and velocity to be smaller than the computed 

errors. This is because the "free" system (no estimation) is 

basically less sensitive to a correlated error than it is to a 

bias. However, as time progresses, the true estimation errors 

become larger than the computed values, This is because the 

true error in estimating the acceleration is always larger 
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than the computed error, and, in fact, the difference grows 

with time. In other words, correlated noise cannot be as 

accurately estimated as bias noise. At t = 25 days, the true 

estimation errors are larger by a factor of 3-5. 

Table XIV shows the effect of assuming the accelero- 

meter error to be correlated (z = 100 days) when it is actually 

a bias. In this case, the true estimation errors are always 

smaller and become significantly so as time progresses. 

The following table summarizes the limited results 

obtained to date and indicates a possible means of choosing 

which value of 'G to assume. 

TRUE POSITION ESTIMATION ERRORS 
NEAR EARTH-ESCAPE, KM 

5 

100 77 61 Not Computed 
61< (105 

-..-. - 
Not Computed 

105< <167 105 
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Suppose that the true value of z is completely unknown and might 

take on any one of a discrete set of values. In this case it 

might be best to choose that value of 'G which gives the smallest 

maximum error. Among the limited choices in the above table, 

the best choice might then be 'G = 5 since this column has the 

smallest maximum value (105 km). Of course, this value is about 

5 times larger than the minimum error obtained when 'G = '1;* = 03. 

A further improvement in the best choice would be possible given 

some probability distribution of 7. In this case, the best 

choice could be based on a weighted average criterion or, pos- 

sibly, a minimum probability of exceeding a specified error 

tolerance. As a simple example, suppose that P(oo) = 0.25, 

P(100) = 0.75, P(5) = 0 and that the error tolerance is 50 km. 

Then, either of the above criteria would lead to a choice of 

T = 100. 
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5. CONCLUDING REMARKS 

The specific numerical results described in this 

report should best be considered indicative of the performance 

that may be expected of celestial-inertial navigation systems 

applied to low-thrust spacecraft. Final performance results 

could only be obtained after such systems are actually designed 

and tested so that improved instrumentation error models are 

available for analysis. However, an attempt was made in this 

study (see also Ref. 1) to assign reasonable characteristics 

and numerical values to the assumed error model, or, if this 

was not possible, to investigate the error,model sensitivity 

by parameter variations. Given this type of analysis, then, 

it can be fairly concluded that an on-board celestial-inertial 

system utilizing optimal state estimation techniques will offer 

high performance navigation for future interplanetary missions. 

This means, essentially, that (1) the state estimation errors 

over the entire flight are maintained at low enough levels to 

be consistent with fuel-efficient methods of trajectory control 

or guidance, and (2) the terminal estimation errors are probably 

well within most mission requirements. 

There is no intent in this analysis to imply that 

celestial-inertial systems are the only means of obtaining high 

performance navigation for spacecraft under continuous, low- 

thrust acceleration. For example, if one could accurately model 

the expected thrust fluctuations from nominal conditions, or if 

-41- 



one could assure that these fluctuations are so shall as to 'be 

insignificant, then it would be possible to eliminate the on- 

board accelerometers. Also, Earth-based tracking of unmanned 

spacecraft might eliminate the need for the on-board system, or 

parts of it, but probably at the expense of frequent tracking 

operations in order to effectively monitor the thrust accelera- 

tion. 
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APPENDIX 

LIST OF SYMBOLS 

General 

a thrust acceleration magnitude 

A,B linearized system matrices, 2 = Ax_ +. Bg 

K filter or weighting matrix for observations 

M 

N 

celestial observation geometry matrix 

covariance matrix of celestial sensor 
random errors 

P covariance matrix of state estimation errors 

U covariance matrix of "white noise" inputs, u 

2 2 
'a$ybah variances of low and high frequency components 

of accelerometer error 

u2 n 

a; 

cl2 
r7 

variance of planet sensor error 

variance of planet horizon uncertainty 

variance of stellar monitor error 

rGa&'cGah correlation time constants of low and high 
frequency components of accelerometer error 

correlation time constant of stellar monitor 
error 

Estimation Error Metrics 

r v 2 KTns' rms' rms W values of the vector-magnitude errors in 
estimating, respectively, the position, 
velocity and low-frequency component of ac- 
celerometer error; obtained from the square- 
root of the trace of the respective covari- 
ante sub-matrices. 

u ryQV"a FWS components of the estimation error vectors 
along the nominal position, velocity and ac- 
celeration vectors, respectively. 
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Table I 

PRINCIPAL EFFECTS OF OBLATENESS 
AND THRUST ON ORBITAL MOTION 

ORBITAL 
ELEMENT 

WXAL DISTANCE 
OR 

SEMI-AXIS 

ECCENTRICITY 

mGUMENT OF 
?ERICENTER 

LONGITUDE OF 
4SCENDING NODE 

INCLINATION 

OBLATENESS THRUST ACCELERATION 
SECOND HARMONIC ONLY, J@ = 1.62~10-~ 

): I a, TANGENTIALLY DIRECTED 

r=ro+J -y 0 sin2i cos (27l + 2w) 

e = e. + +- J(+J[( 2-3 sin2i) cos '1 

+-$-sin2i cos (q+2w)+ssin2i cos(39+20)~ 

sin '1 - sin2i +j sin 11 L 

+$sin (r1+2w) - 5 sin (3r1+2w)]} 

Q = il.0 - J(%y2 cos i (N'c) 

i=io+L 4 J(k? sin 2i c0S 2(7+w) 

! r = ro [,- (gyat 1” 
[ 

&=2 c 
y2 (e + cos q)a / 

e = 9 r2 : e. = cos 90 = 9 rg 

2a 2 CO = coo + Nt : eo = cos qo = - ro 

N = (+)1'2 
P 

MEAN ANGULAR MOTION 

i-2 = Qo 

i = i. 

RE = EQUATORIAL RADIUS OF EARTH q= TRUE ANAMOLY = 8 - 0 

p = GRAVITATIONAL CONSTAFT OF EARTZ a = POLAR ANGLE = 8 o + Nt (SHORT TERM 



Table II 

NOMINAL ERROR PARAMETER VALUES 

1. Initial Position and Velocity Uncertainty 

Position (x, y, 2) = 1 km (RMS) 

Velocity (x, y, z) = 1 m/set (RMS) 

Correlation = 0 

2. Accelerometer Errors 

a) Low frequency: 'a& 
= 1l-p m/sec2 (or 10-5) 

%a& 
= co (bias) 

b) High frequency: rsah = 10 -6 
m/sec2 (or 10 

-5 
) 

rGah = 30 minutes 

3. Stellar Monitor Error 

% 
= 10 set arc 

3 
= 30 minutes 

4. Planet Sensor Error (random) 

*cl 
= 10 set arc 

GR = 3.2 km (horizon uncertainty) 
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Table III 

EFFECT OF CELESTIAL ~QBSERVATION RATE ON 
RMS STATE ESTIMATION ERRORS Xl?-'l?mTJ+ESCAPE CONDITIONS 

NOTE: For this example, aa = 10m5m/sec2 

Radial Position 

(KM) 

Angular Position 
(SEC ARC) 

Radial Velocity 

(M/SEC) 

Tangential Velocit: 

(M/SEC) 

Plane Orientation 

(SEC ARC) 

Accelerometer Bias 
In-Plane 

Out-Of-Plane 
(M/SEC2) 

2'ORBIT 

20 

10 

0.05 

0.03 

12 

3 x lo-* 

3 x 1o-7 

8'ORBIT =/ORBIT 

12 

7 5 

0.03 0.02 

0,02 0.01 

11 8 

I 

2 x lo-* 1.5 x lo-* 

2 x 1o-7 1.4 x 1o-7 
I 
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Table IV 

EFFECT OF ACCELEROMETER BIAS MAGNITUDE ON _- _ -- - -- 
RMS STATE ESTIMATION ERROR3 AT-EARTH-ESC~~_(=O_NDITIONS 

Radial Position 

(KM) 

Angular Position 

(SEC ARC) 

Radial Velocity 

(M/SEC) 

Tangential Velocity 

(M/SEC) 

Plane Orientation 

(SEC ARC) 

Accelerometer Bias 
In-Plane 

Out-Of-Plane 
(M/SEC' ) 

0 

1.5 

2 

0.005 

0.003 

2 6 11 

0 

0 

- --- - _-.- ~-~~ 

10-6wSec2 

11 

5 

0.02 

0.01 

1.7 x10-* 

1 x 1o-7 

- - 

12 

7 

0.02 

2 x lo-* 

2 x 1o-7 
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Table V 

EFFECT OF ACCE&!$RO@T.ER ERROR CORRELATION Tm I__ .._. -_ --____ 
RMS STATE ESTIMATION ERRORS AT EARTH-ESCAPE CONDITIONS _._-. -____ -._ --.~---..--.----~_- ..__,..--, I_-.-_- - .__-.- .-_._ -__---__. x _A--- --. 

Radial Position 

(KM) 

--- -_____ -- 

Angular Position 

(SEC ARC) 

--- 

Radial Velocity 

(M/SEC) 

Tangential Vtilocity 

(M/SEC) 

- 

Plane Orientation 

(SEC ARC) 

-- .-..---~ 

Accelerometer 
Error 

In-Plane 
Out-Of-Piane 

(M/SEC ) .- 

(B:S) 

11 

5 

0.02 

0.01 

6 

1.7 x lo-" 

1 x 1o-7 

100 DAYS 

75 

10 

0.3 

002 

10 

--__._- -_._ ..__--_ 

4. x 1(ya7 

3,4 x 1o-7 

5 DAYS 

144 

10 

0.5 

_- 

0.4 

12 

_- 

0.98 x lo-- 
0,89 x 1O-6 

--- 
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Table VI 

SUMMARY OF STATE ESTIMATION ERRORS 

FOR MARS ORBITER MISSION 

STATE ESTIMATION SYSTEM I SYSTEM II 
ERRORS ACCELEROMETER ACCELEROMETER 

Termination of 
Earth-Escape 

Phase 

Y 
ITIM’ 

km 

“v 
JXlS’ “/ set 

“a 
KTllS’ “/ set 

28 84 

0.06 0,. 31 

1.2x1o-7 6.6x1o-7 

Termination of 
Heliocentric 

Phase 

iY- 
IXIS 311 1510 

“v 
ITIllS 0.17 1.13 

“a 
IXtlS o.29x1o-7 8.8~10-~ 

Termination of 
Mars-Capture 

Phase 

^r 
3X-E 

0.6 1.1 

T 
JXTlS 

0.13 0.19 

“a 
rTtk3 

0.26~10-~ 6.3~10-~ 
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Table VII 

SUMMARY-OF STATE ESTIMATION ERRORS 

FOR-JEWS ORBITER MISSION 

Termination of 
Earth-Escape 

Phase 

-2 
JITLS 

km 28 84 

v lXllS’ m/ set 0.06 0.31 

“a 
l3Tl.S “/ 2 set 1;2x10-7 6.6x1o-7 

Termination of 
Heliocentric 

Phase 

Y rms 220 1020 

“v 
ITflS 0.18 1.1 

"a 
KTILS 0.28~10-~ 9.1ao-7 

Termination of 
Venus-Capture 

Phase 

"r 
JXlS 

0.8 1.3 

v 
ITITIS 

0.15 0.20 

z 
IXIS 

0.27~10-~ 6.3~10-~ 
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Table VIII 

SUMMARY OF STATE ESTIMATION ERROF@ 

FOR MARS FLYBY MISSION 

STATE ESTIMATION 
ERRORS 

Termination of 
Earth Escape 

Phase 

r 
l3tlS’ 

km 28 84 

V 
JItlS' m/ set 

a 
ITS’ m/ sec2 

Termination of 
Heliocentric 

Phase 

r 
l?KlS . . 

“v 
III-IS 

: 
3ZlTlS 

Mars Closest 

Approach 

V 
lXtl.5 

SYSTEM I 
KCELEROMETER 

0.06 

1.2x1o-7 

900 

0.3 

0, 29x1o-7 

43 

3.3 

-52- 

SYSTEM II 
ACCELEROMETER 

0.31 

6.6x1o-7 

2100 

1.6 

1o.5x1o-7 

47 

3.7 



Table IX 

SuI$@RY OF STATE ESTIMATION ERRORS 

FOR JUPITER FLYBY MISSION 

STATE ESTIMATION 
ERRORS 

Termination of 
Earth-Escape 

Phase 

Y 
IXlS 

km 

“v 
IITIS m/ set 

"a 
JXLS' m/ sec2 

Termination of 
Heliocentric 

Phase 

“r 
lZTl-l.5 

v 
JXIIS 

“a 
IXTlS 

Jupiter Closest 
Approach 

Y 
III-IS 

SYSTEM I 
ACCELEROMETER 

28 

0.06 

1.2x1o-7 

8900 

0.69 

o.22x1o-7 

320 

44 

SYSTEM II 
ACCELEROMETER 

84 

0.31 

6.6x1o-7 

86,000 

10.7 

14x1o-7 

370 

50 
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Table X 

ESTIMATION ERRORS WITH INCORRECT INITIAL VELOCITY COVARIANCE 

Assumed Velocity Covariance, 1 m/set 
* True Velocity Covariance, 0 

t Lls 
days km 

0 107 

1 507 

2 408 

3 405 

4 4.4 

5 403 

10 504 

15 804 

I-l-- 25 15,o 2300 

“r* 
LIS 

v* 
N 
a z* 

IIllS ITl-lS 3TflS IL-Ills 

km m/set l-4 set 10B6m/sec2 lo-'m/see: 

107 1,73 1,73 1,73 1,73 

507 0027 0027 1069 lo69 

407 0,19 0016 1,12 lo09 

402 0.16 0,14 1.03 lo01 

400 0,13 0.11 0,94 0.92 

308 0,12 0,lO 0,90 0,88 

405 0,07 0006 0,70 I 0069 

606 0,06 0.05 0048 0.47 

1104 15,2 '! I 0006 0006 0,04 0,04 0,27 0,14 0025 0,lO 



Table XI 

ESTIMATION ERRORS WITH INCORRECT ACCELEROMETER BIAS COVARIANCE 

Assumed Bias, 'at = lo+ m/sec2 

True Bias, 
-F 

"at = 2X10+ m/sec2 

t 

days 

0 

1 

2 

3 

4 

5 

10 

15 

20 

25 

“r rms 

km 

“r* 
Ill-E 

km 

107 107 

507 604 

408 505 

405 405 

404 404 

403 403 

504 504 

8.4 804 

15,o 15,o 

2300 2300 

- 

r 
j 
I I 

1 
I 

- 

- - 
%ms 
m/set 

lo73 

0027 

0,19 

0016 

0,13 

Go12 

0,07 

0006 

Ob06 

0606 

T i 
- 

I 

“v* 
KIILS 

d set 

lo73 

0,35 

0,21 

0.16 

0,13 

0,12 

0,07 

0006 

0006 

0006 

- 

7 1 
r I I ‘- 

a i z* 
ITflS KTCE 

lo-'m/sec2 lo-'m/sec2 

lo73 

lo69 

lo12 

lo03 

0.94 

0,90 

0,70 

0048 

0027 

0,14 

L 

3046 

3032 

lo99 

lo83 

1.68 

lo62 

lo09 

0,61 

0028 

0,14 



Table XII 

ESTIMATION ERRORS WITH INCORRECT ACCELEROMETER BIAS COVARIAWE 

Assumed Bias, aak = 10m6 m/sec2 

True Bias, crrk = 10 -7 m/sec2 

t I “r “r* 
IZIt-lS rms TlTlS 

days I km I km I m/set 

v* 
33TlS 

m/ set 

“a “a* 
KIlli3 JTlS 

1o-6 m/ sec2 lo-'m/sec2 

0 

1 

2 

3 

4 

5 

10 

15 

20 

25 

1.7 

5.7 

408 

405 

404 

403 

504 

804 

I 15.0 

2300 

1.73 1.73 1.73 

0027 0.23 1.69 

0,19 0,17 lo12 

0,16 0.14 1.03 

0,13 0,ll 0,94 

0,12 0,lO 0.90 

0.07 0,04 0,70 

0006 0,03 0048 

0006 0,02 0027 

0006 0,02 0,14 

0,17 

0.40 

0.54 

0.49 

0,45 

0,44 

0,44 

' 0,41 

0023 

: 0,lO 



Table XIII 

ESTIMATION ERRORS WITH INCORRECT CORRELATION TIME OF ACCELEROMETER ERROR 

Assumed Correlation, cGak 
=CX3 

True Correlation, pi& = 100 Days 

t fi Fms 
1: 

days [i km 

1 /[ 5.7 

2 // 
I!/ 408 
(I 

3 /j 45 0 

4 Ii ’ 4,4 

5 403 

10 504 

15 804 

20 15,o 

25 2300 

“r* 
lTlS 

km 

1.7 1.73 

5.7 0.27 

407 0,19 

402 0016 

4.1 0,13 

400 0,12 

5c.7 0,07 

12.4 0006 

3107 0.06 

7606 0006 

klllS 

m/set 

- 

“v* 
KTRS 

d set 

1.73 

0027 

0.18 

0.14 

0,ll 

0,lO 

0008 

0,13 

0,22 

0,33 

a 
?ZlTlS 

.0a6m/sec2 

lo73 1.73 

1069 1069 

1,12 1.12 

1,03 1,03 

0,94 0096 

0,90 0,94 

0,70 0.81 

0,48 0,70 

0027 0.64 

0,14 0,68 

s* 
LTIIS 

LOmem/sec2 



Table XIV 

ESTIMATION ERRORS WITH INCORRECT CORRELATION TIME OF ACCELEROMETER ERROR 

Assumed Correlation, %at = 100 days 

True Correlation, l;& = 03 

t 

days 

r 
rills 

km 

0 107 

1 5.7 

2 408 

3 406 

4 406 

5 407 

10 702 

15 13,5 

20 2800 

25 6100 

I I 
i 
i 

I 

t 
1.7 lo73 

5.7 I 0027 

408 0.20 

4.5 0.17 

4,4 I 0,15 

4,3 i 
601 I/ ij 

0.14 

I 

0,13 
i 

UC0 1; 0,15 

2104 ii O,i9 

4000 /I 
II 

0027 

II 

“v* 
?XlS 

m/set 

lo73 1.73 

0027 1.69 

0,19 lo12 

0.16 lo03 

0,13 0098 

0,12 0,96 

0,09 0080 

0,io 0,66 

0,ll 0058 

0.14 0062 

a 
IllIS 

10-6m/sec2 

- 

- 

i i I I 
i 

1 

i 

i 

t 

i 
I 

i 
1 

-L 

z* 
rITEi 

10-6m/sec2 

1,73 

1069 

1.12 

1,03 

0,94 

0,90 

0049 i 
i 0.29 i 

O”20 j 
i 
1 



POINTING 
INFORMATION 

MEASURED 
CELESTIAL ANGLES 

CELESTIAL SENSORS 
TARGET 
RADIATION - NAVIGATION 

- COMPUTER 
l 

BEST ESTIMATE 
- OF VEHICLE 

l I MU 
STATE 

THR.UST MEASURED 
ACCELERATION 

t 

ACCELERATION 

STABILIZATION 
INFORMAT ION 

(a) CELESTIAL- INERTIAL NAVIGATION SYSTEM 

2 (t,) 
OPTIMAL 
FILTER 

w 

POSITION- 
, --I- 

DELAY 
ANGLE I I 

1 GEOMETRY ] 
I 

q,(t) 

tk 
i (+-,e,) 

TRAJECTORY AND 

INSTRUMENTATION 
P 

4 f-3 * 
ERROR 

DYNAMfCS z(t) 

_ tE(t,+,’ t,) 

lb) NAVIGATION COMPUTER 

FIGURE 1 
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-_---.--_- .-. 1.-._--.-.... -_-. .__-...-“- 

-! 

6880 

W 
v 6870 
z 

a 0 
0 2 4 6 8 IO . .C) IL. 

TIME t, lo3 SECONDS 

FIGURE 2 VARIATION OF ORBI'I'EL l?LEI%:'TS FOR LOW THRUST SPIRAL 
ABOUT OBLATE EARTH 

a=10-3~/sec2 , io=4S0 
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_._-._I._ ..I. ...“*-- . --^ -.I---~_---- 

NUMBER OF REVOLUTIONS 

3 4 5 6 
0 % 0 c1 

0 5 IO I5 20 25 
TIME, OAYS 

F:TGl!RE 3 RADIAL DlSTANCE AND ECCENTRICITY ALONG 
NOMINAL EARTH ESCAPE TRAJECTORY 
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PERTURBED ESCAPE SPIRAL 

WI = +400 m/set 

CLOSEST APPROAC: 

Q TIME INTERVAL, DAYS 

FIGURE 4 PERTURBING EFFECT OF MOON ON LOW-THRUST ESCAPE SPIRAL 

a=10--3 m/:;ecz i--i) =30 
L&di> ==-50 
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II \ /I 

2.4 

1.6 

0.8 Or 

t u-- 

0 I I I I I I I I I I I I I 
0 6 I2 18 24 30 36 

TIME, HOURS 

a) POSITION UNCERTAINTY 

FIGURE 5 TIME HISTORY OF STATE ESTIMATION ERKORS DURING 
EARLeY PART OF EARTH ESCAPE SPIRAL, START FROM 
8230 KM ORBIT, a = 10e3 m/aecz 
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3.5 

3.0 

I.0 

0.5 

0 

ii rms 

I I I I I I I I I ! I I -..-.- 
0 6 12 I8 24 30 36 

TIME, HOURS 

b) VELOCITY UNCERTAINTY 

FIGURE 5 CONTINUED 
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I? 
: 2.c 
I 

in 

b 

“w 0.a 
I- 
W 
2 
0 
a 
W 

= 0.4 

t: 
a 

0 

IF 

)- 

- 

i- 

I - 

I I I I I I I I I I I I 
0 6 12 I8 24 30 36 

TIME. HOURS 

c) ACCELEROMETER BIAS UNCERTAINTY 

FIGURE 5 CONTINUED 
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I I I I I I I I I I I I 
0 6 12 I8 24 30 36 

TIME, HOURS 

d) LONGITUDE OF ASCENDING NODE AND INCLINATION UNCERTAINTY 

FIGURE 5 CONTINUED 
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OBSERVE DIRECTION OBSERVE DIRECTION 
TO TO EARTH AND EARTH AND 
SUBTENDED ANGLE 

OBSERVE DIRECTIONS 
TO EARTH AND MOON 

0 5 ID I5 20 25 3 
TIME, DAYS 

FIGURE 6 EFFECT OF LUNAR OBSERVATIONS ON NAVIGATION ACCURACY, 

EARTH ESCAPE PHASE FROM 50,000 KM ORBIT 
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IOC 

I-- 

CORRELATION TIME OF 
LOW - FREQUENCY 
ACCELEROMETER ERROR 

)-- 

- 

TIME, DAYS 

a) POSITION UNCERTAINTY 

FIGURE 7 EFFECT OF ACCELEROMETER CORRELATION TIME ON 

NAVIGATION ACCURACY, EARTH ESCAPE PHASE FROM 

50,000 KM ORBIT 
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a 
CORRELATION TIME OF 
LOW -FREQUENCY 
ACCELEROMETER ERROR 

I 
I- aQt DAYS 

5 IO I5 20 
TIME, DAYS 

b) VELOCITY UNCERTAINTY 

FIGURE 7 CONTINUED 

25 
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l- 
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25 
0 
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W 
-J 
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z IO’ 

a 

- - - - . . ”  

CORRELATION TIME OF 
LOW - FREQUENCY 
ACCELEROMETER ERROR 

Tall DAYS 

I- I I I I I I 
0 5 

L--J--J-I 
IO 15 20 25 

TIME, DAYS 

c) LOW-FKEQUENCY ACCELEROMETER ERKOR UNCER'I'AIN'rY 

FIGURE 7 CONTINUED 
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DIRECTION 
--__ -___ -.---) 

\ 
\ / 

\ / 
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----‘;;-hRTH 

205.4 

/ 

X 

ORBIT 

FIGURE 8 MARS RENDEZVOUS 205.4 DAYS, 

CONSTANT TJdRUST MODE WITH 

COAST PERIOD 
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.,^--.l..-.-” ,.....- -_ . ..--. -l”.l-_l_--l..---I 

/-\ 

SYSTEM JI 
ACCELEROMETER 

0 40 80 120 160 200 240 
TIME, DAYS 

FIGURE 9 POSITION UNCERTAINTY DURING HELIOCENTRIC PHASE, 

MAR!3 ORBITER MISSION 
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OBSERVATION INTERVAL - a/ORBIT - ._ . ^ -----_- -^ _-.-.- .-.- -. ---- ---.-I --- a/ORBIT . -- -.- I 

SYSTEM II: 
ACCELEROMETER 

SYSTEM I 
ACCELEROMETER 

0 100 200 300 400 500 600 
TIME, HOURS 

L - -..-_ 1-d I_- I f 
190 100 so 20 IO 

RADIAL DISTANCE, lo3 KM 

FIGURE 10 POSITION UNCERTAINTY DURING MARS 
CAPTURE PHASE, MARS ORBITER MISSION 

-73- 



100 80 
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SUN 
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2oY THRUST 
DIRECTION 

I?%GuRE 11 VENUS RENDEZVOUS 120 DAYSIVARIABLE 
THRUST MODE 
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2800 

2400 
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I- 

)- 

I SYSTEM I 
ACCELEROMETER fi \ A 

SYSTEM II: 
ACCELEROMETER 

OBSERVATION INTERVAL - Z-DAYS 1 

J 
120 

I I I I I I 
40 

I I I 
60 80 100 

TIME, DAYS 

FIGURE 12 POSITION UNCERTAINTY DURING HELIOCENTRIC PHASE, 
VENUS ORBITER MISSION 
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-m 
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I I I I I I I I I I I 
0 100 200 300 400 500 600 

TIME, HOURS 

340 100 50 30 20 

RADIAL DISTANCE, IO3 KM 

FIGURE 13 POSITION UNCERTAINTY DURINQ VENUS CAPTURE PHASE, 
VENUS ORBITER MISSION 
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\ 
120 -- 60 .MARS ORBIT 

DIRECT ION 

DAYS 

FIGURE 14 MAItS FLYBY 120 DAYS,VARIABLE 
'WRUST MODE 
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6OOOt 

CIBSERVATION IN~R~ICL - 2 mxs 

5000 - SYSTEM It 
ACCELEROMETER 

I L Y 
#. I 
; 4000 I 

2 2000 
I- 
i% 
0 
a. ir 

60 
TIME, DAYS 

80 100 120 

SYSTEM I 
ACCELEROMETER 

FIGURE 15 POSITION UNCERTAINTY DURING HELIOCENTRIC PHASE, 
MARS FLYBY MISSION 
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OBSERVATION INTERVAL - l/2 HR .--. ----I 

INITIAL CONDITIONS 
NON -THRUSTED FLY 

SYSTEM II 
ACCELEROMETER 

SYSTEM I 
ACCELEROMETER 

FOR 
BY 

I I I I I I I I I I I 

4 8 I2 I6 20 2 
TIME, HOURS 

I I I I I I I I 
97 80 60 40 20 IO 0.65 

RADIAL DISTANCE, lo4 K M 

FIGURE 16 UNCERTAINTY IN CLOSEST APPROACH DISTANCE TO MARS, 
PLANETOCENTRIC PHASE, MARS FLYBY MISSION 
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ACCELEROMETER 

OBSERVATION INTERVAL - 5 DAYS .-- ---.- -._. I._ - _-.._ ----- ----. .-- ^-- 

I I 1 I I I I I I I I 

FIGURE 18 

60 120 180 
TIME, DAYS 

POSXTION UNCERTAINTY DURING 

JUPITER FLYBY MISSION 

140 300 

HELIOCENTRIC PHASE, 
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OBSERVATION INTERVAL - 2 HRS ---_- _..-_-I-.--.-.------- e-e 

INITIAL CONDITIONS FOR 

I I I I I I I I I I I d 

0 20 40 60 80 100 
TIME, HOURS 

I I I I I mmmmcI .- -~. _ _. ..- .-.- 
12.5 IO 8 6 4 2 

RADIAL DISTANCE, lo6 KM 

FIGURE 19 UNCERTAINTY IN CLOSEST APPROACH DISTANCE TO 

JUPITER, PLANETOCENTRIC PHASE, &JlJPJTER FLYBY 

MISSION 
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